Đường dẫn truy cập

Anh ngữ đặc biệt: Drought-Resistant Crops / Designer Rice

Chương trình học tiếng Anh của VOA: Special English Agriculture Report - Drought-Resistant Crops / Designer Rice. Xin hãy vào http://www.youtube.com/user/VietSpecialEnglish để xem các bài kế tiếp.

This is the VOA Special English Agriculture Report.

A discovery in a laboratory could help lead to new generation of drought-resistant crops. Drought conditions cause plants to produce a stress hormone called abscisic acid. This chemical activates a set of protein molecules called receptors. These receptors then activate a series of changes to help the plant survive.

The natural reaction of the receptors is to close so-called guard cells on and inside the leaves. That closure decreases water loss and stops the plant from growing to save water during a drought.

Researchers say they have discovered a way to "supercharge," or increase, this reaction. Sean Cutler at the University of California, Riverside, led the team. The scientists engineered abscisic acid receptors that can be turned on at will and stay on. They tested hundreds of versions of engineered receptor genes until they found ones that worked right together.

The team worked with Arabidopsis, a plant often used in experiments. The results recently appeared in the Proceedings of the National Academy of Sciences.

Professor Cutler says testing the new receptors in the field may take several years. He also points out that drought is not the only cause of plant stress. What would be stressful for a crop plant is not stressful for a cactus, for example, because the cactus has evolved to live in dry deserts.

In another development, scientists have produced a new system for analyzing genetic markers in rice plants. A genetic marker is a DNA sequence with a known location. It can help scientists identify nearby genes linked to individual qualities, or traits.

Anna McClung and Georgia Eizenga are genetic scientists with the United States Department of Agriculture. Their new system will let researchers genetically "fingerprint" rice varieties and gain a better understanding of the markers. Until now, breeders have been limited to using perhaps two hundred markers. But modern technology lets scientists identify differences throughout the plant's genome, its genetic map. Ms. McClung says that means the ability to identify new genes that control biological pathways. These pathways in the plant may control traits like yield, disease resistance and nutritional quality. The finding could make it easier in the future for farmers to grow "designer rice," rice bred to meet their specific needs.

Đường dẫn liên quan

VOA có ứng dụng mới

Xem tin tức VOA trực tiếp trên điện thoại và máy tính bảng! Ứng dụng VOA có thiết kế mới và cải thiện khả năng truy cập tin tức. Các tính năng mà bạn yêu thích trước đây được tích hợp cùng các công cụ vượt tường lửa để truy cập tin tức VOA bằng 22 ngôn ngữ.

Tải ứng dụng VOA trên App StoreGoogle Play!

VOA Express